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Abstract

In this paper, a new perspective is suggested for unsupervised Ontology Matching 
(OM) or Ontology Alignment (OA) by treating it as a translation task.

Ontologies are represented as graphs, and the translation is performed from a 
node in the source ontology graph to a path in the target ontology graph.

The proposed framework, Truveta Mapper (TM), leverages a multi-task sequence-
to-sequence transformer model to perform alignment across multiple ontologies 
in a zero-shot, unified and end-to-end manner. Multi-tasking enables the model to 
implicitly learn the relationship between different ontologies via transfer-learning 
without requiring any explicit cross-ontology manually labeled data.

This also enables the formulated framework to outperform existing solutions 
for both runtime latency and alignment quality. The model is pre-trained and 
fine-tuned only on publicly available text corpus and inner-ontologies data. The 
proposed solution outperforms state-of-the-art approaches, EditSimilarity, LogMap, 
AML, BERTMap, and the recently presented new OM frameworks in Ontology 
Alignment Evaluation Initiative (OAEI22), offers log-linear complexity in contrast 
to quadratic in the existing end-to-end methods, and overall makes the OM 
task efficient and more straightforward without much post-processing involving 
mapping extension or mapping repair.

For details on the other parts of our system, we invite you to read our whitepapers 
covering patient privacy and data quality. The transparency provided by these 
papers is just one of many commitments we have made to earn the trust of our 
health system members and customers—and ultimately achieve our mission of 
Saving Lives with Data. 

The proposed framework, 
Truveta Mapper (TM), 
leverages a multi-task 
sequence-to-sequence 
transformer model to 
perform alignment across 
multiple ontologies in a 
zero-shot, unified and 
end-to-end manner.
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1. Introduction  

Ontology Matching (OM) or Ontology Alignment (OA) is the process of finding correspondence 
between the entities of two ontologies. The purpose of this process is to unify data from different 
sources and reduce heterogeneity, making data more viable for research and development 
[Neutel and de Boer, 2021]. Classical state-of-the-art (SOTA) approaches on OM are based on 
non-contextual matching, where the model captures lexical similarity but fails to understand 
textual semantics, which results in ambiguity. On the other hand, with contextual approaches, 
the objective is to match complex pairs which are lexically different but semantically similar and 
vice-versa. For example, “Encephalopathy” and “Disorder of brain” are lexically different but are 
used in the same context. However, “Structure of permanent maxillary right second molar tooth” 
and “Structure of permanent mandibular right first molar tooth” are lexically similar but are 
semantically different.

Recently, a transformer-based contextual framework using BERT [Devlin et al., 2018], has been 
proposed in [He et al., 2022a], which showed promising results compared to other OM systems. 
In their approach the existing pre-trained BERT model was fine-tuned to learn the similarity 
between different terms, and thereby achieve equivalence matching. This process involves 
computing the similarity of each input term with a large subset of terms in the target ontology, 
resulting in quadratic complexity. Additionally, the model captures textual context, however, 
it does not understand the ontology graph structure, which could significantly extend the 
capabilities of ontologies graph matching.

Motivated by the potential of the transformer models for understanding textual semantic 
context and overcoming the limitations in the existing methods, the present work proposes 
Truveta Mapper (TM), a novel zero-shot sequence-to-sequence multi-task transformer-based 
framework for OM, with the capability of learning both the graph-structure and textual 
semantics of the ontologies. 

The model is first pre-trained to learn the hierarchical graph structure of ontology and 
semantics of each class using Masked Language Modeling (MLM), then fine-tuned using class 
labels and synonyms as input and class hierarchical-ID as the output, capturing the structure 
of the ontology. As such, we treat OM as a translation task, where the source ontology class is 
translated to a path in the matching target ontology class in a zero-shot and multi-task manner. 
Proposed approach is based on zero-shot learning and prediction, where “zero-shot learning” 
refers to the ability of the model to make source-to-target predictions without requiring manually 
labeled cross-ontologies matching pairs, and “zero-shot prediction” performs end-to-end 
mapping from the source to the target without any similarity calculation across the entire subset 
target ontology or post-processing like extension/repair. With multi-tasking, a single model is 
capable of matching different ontologies such as SNOMED to FMA, SNOMED to NCIT, and so on, 
and takes advantage of transfer learning as well.
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In this work, empirical comparison is made with the state-of-the-art lexical matching 
approaches and the recent contextual models presented in [OAEI, 2022; He et al., 2022b] 
on the Unified Medical Language System (UMLS) datasets as part of the New Bio-ML track 
for OAEI 2022.

The Ontology Alignment Evaluation Initiative (OAEI) organizes yearly campaigns on 
ontology matching tasks. Our solution surpasses state-of-the-art LogMap, AML models, 
Edit-similarity, and recently proposed BERTMap, AMD, LogMap-Lite, BERTMap-Lite, 
LSMatch, Matcha and ATMatcher, while offering log-linear complexity in contrast to 
quadratic in many existing approaches.

The remainder of this paper is as follows: 

• Section 2 reviews the recent SOTA-related works on OM/OA

• Section 3 defines the problem statement, provides a high-level understanding of our 
proposed approach and the ontologies used

• Section 4 describes TM in detail, elaborates on pre-training, fine-tuning, zero-shot 
learning, and predictions

• Section 5 shows the evaluation criteria, results, and gives insight about the overall 
model performance

• Section 6 provides a detailed discussion, conclusion on the framework, and outlines 
our potential future works
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2. Related work  

OM classical approaches are primarily based on non-contextual matching. Related to 
that, some notable works in the field of OM include Edit-Similarity [DeepOnto, 2022], 
LSMatch [Sharma et al., 2022], LogMap [Jimenez-Ruiz and Cuenca Grau, 2011], and 
AgreementMakerLight (AML) [Faria et al., 2013], among others. Edit-Similarity is a naive lexical 
matching approach based on normalized edit similarity scores. LSMatch is another lexical 
matching approach based on string similarity match. LogMap and AML are two classical OM 
systems with leading performance in many equivalence matching tasks. These two approaches 
are based on lexical matching, mapping extension (adding new mappings for semantically 
related classes of the current mappings), and mapping repair (removing mappings that 
can lead to logical conflicts). However, these lexical approaches do not consider contextual 
semantics.

Recently, several OM systems, such as OntoEmma [Wang et al., 2018], DeepAlignment 
[Kolyvakis et al., 2018], VeeAlign [Iyer et al., 2020], leveraged dense word embeddings, in which 
words are projected into a vector. Word pairs with smaller Euclidean distances in the vector 
space will have closer semantic meanings. Different techniques are used to generate these 
embeddings. OntoEmma and [Zhang et al., 2014] uses word2vec [Mikolov et al., 2013], which 
is trained on Wikipedia; [Tounsi Dhouib et al., 2019] uses FastText [Bojanowski et al., 2017]; 
LogMap-ML [Chen et al., 2021b] uses OWL2Vec* [Chen et al., 2021a], which is a word2vec 
model trained on corpora extracted from the ontology with different kinds of semantics; 
DeepAlignment uses refined word embeddings using counter-fitting; VeeAlign proposes dual 
embeddings using class labels. These are primarily traditional non-contextual word embedding 
methods and do not consider word-level contexts. Some of these approaches, such as 
VeeAlign, are based on supervised training, which requires high-quality labeled mappings for 
training and can be challenging to obtain.

Recently, transformer-based models [Vaswani et al., 2017], thanks to their ability to learn 
textual contexts, obtained SOTA for several tasks in natural language processing such as 
machine translation [Johnson et al., 2017; Xu and Carpuat, 2021; Liu and Chen, 2021], question 
answering [Clark et al., 2019], among others. Similarly, in the field of OM, recent developments 
have also shown the potential of using transformer-based frameworks [Neutel and de Boer, 
2021; He et al., 2022a; Wang, 2022]. Neutel and de Boer (2021) employed contextual BERT 
embeddings to match two domain ontologies associated with occupations. Each sentence is 
embedded using BERT, and similarity is applied to get the scores for OM. More recently, [He et 
al., 2022a] proposed BERTMap model, which is obtained by fine-tuning the already pre-trained 
BERT model for the binary classification task. The BERTMap model often outperformed non-
contextual approaches such as LogMap, AML, and LogMap-ML. However, it requires quadratic 
time complexity, which is challenging for large ontologies. AMD [Wang, 2022] is another recent 
context-based matching approach that uses a BERT-based model to generate mappings
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and then filter these mappings using graph embedding techniques. Other related ontology 
matching systems that participated in OAEI 2022 [OAEI, 2022] are LogMap-Lite, BERTMap-Lite, 
Matcha, and ATMatcher.

3. Methodology 

3.1 Problem statement
Ontology Matching (OM) or Ontology Alignment (OA) is the process of finding correspondence 
between the entities/classes of two ontologies [He et al., 2022b]. In this work, a new 
perspective is presented by treating OM as a translation task for equivalence matching and can 
be mathematically presented as f(c1, T), where function f gives the matching target ontology 
class c2 ∈ C2 , given a source class c1 ∈ C1, and T is the alignment task identifier. O1 and O2 as the 
source and target ontologies, with C1 and C2 being their respective named class sets. Since we 
are training a multi-task model, a unique identifier is used for each task.

The present work focuses on equivalence matching, where classes having the same semantic 
meaning in different ontologies are matched with each other. As shown in Figure 1, each 
ontology is presented in the form of a hierarchical graph structure with parent-child relation, 
where each class presents a node in the given ontology graph. In Figure 1, we illustrate 
our high-level solution, where we train our model to learn this hierarchical structure, and 
consequently, target class c2 ∈ C2 is obtained as a path in the target ontology graph, for a given 

input node representing class c1 ∈ C1 in the input ontology.1

3.2 Ontologies
In this work, as a part of the New Bio-ML track [OAEI, 2022], we focus on three UMLS 
equivalence matching tasks, SNOMED to FMA (Body), SNOMED to NCIT (Neoplas), and 
SNOMED to NCIT (Pharm), in an unsupervised setting from [OAEI, 2022], where the matching 
pairs between these ontologies are only divided into validation (10%) and testing (90%) 
sets, without any training data. Pharm, Neoplas, and Body are associated with the semantic 
types of “Pharmacologic Substance”, “Neoplastic Process”, and “Body Part, Organ, or Organ 
Components” in UMLS, respectively. Based on these semantics types, subset ontologies are 
provided in [OAEI, 2022], and are given as SNOMED (Body), SNOMED (Neoplas), SNOMED 
(Pharm), FMA (Body), NCIT (Neoplas) and NCIT (Pharm), where the first three are the source 
and last three are the target ontologies in our matching task (Table 1). For each of the classes 
present in the given ontologies, class ID is provided along with its associated label and possible 
synonyms (class descriptions). For example, in Figure 1, for Snomed ID 78904004, the class 

label is “Chest Wall Structure,” and its synonyms are “Thoracic Wall” and “Chest Wall”.

1 Note, each class is presented as a node in the ontology hierarchical graph-structure, as such, class and node are 
used interchangeably, as appropriate.
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Ontologies #Classes Subsets #Classes

NOMED 358,222
Body

Pharm            
Neoplas

21,182
16,045
11,271

FAM 104,523 Body 64,726

NCIT 163,842 Pharm
Neoplas

15,250
13,956

Table 1: Ontologies and their subsets [OAEI, 2022], same version as [He et al., 2022b]. SNOMED subsets 
are the source ontologies, while FMA and NCIT are the target ontologies. 
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Figure 1: The equivalence matching between the SNOMED class ID 78904004 – “Chest Wall Structure” and 
two FMA concepts, “Wall of thorax” with ID of fma10428 and “Chest wall” with ID of fma50060, is illustrated 
in this figure. TM translates from the source node encoding “Chest Wall Structure” in the SNOMED graph to 
the highlighted path “A . . . C . . . F” (presenting Chest Wall) and “A . . . B . . . E” (Thoracic Wall) in FMA ontology. 
While the SNOMED graph’s “Chest Wall Structure” node and the FMA graph’s “Chest Wall” node have 
children, the FMA ontology’s “Thoracic Wall” is considered a leaf in this graph (no children).



4. Truveta Mapper (TM): Proposed approach for OM

Figure 2 demonstrates training architecture, with two main steps of pre-training and fine-tuning. 
Starting from a language model pre-trained on the C4 dataset, the model is further pre-trained on 
the full ontologies, learning each ontology’s semantics and hierarchical structure. Afterward, the 
model is trained on the downstream task using the subset ontology data during the fine-tuning 
stage. The pre-training and fine-tuning steps are done in a multi-task manner on inner ontologies, 
which enables the model in extensive transfer learning (Figure 2). In the prediction step, given a 
source ontology, the output is predicted in a zero-shot manner. More details are provided for each 
step in the subsequent subsections. 

Figure 2: Training Architecture. Starting from a language model pre-trained on the C4 dataset, further pre-training 
is done using MLM on the full ontology graphs. The pre-trained model is then fine-tuned on downstream tasks, 
translating from the class descriptions (label and synonyms) to the target node path (hierarchical-IDs). The pre-
training and fine-tuning are done in a multi-task manner. The pre-training is performed on both source and target 
inner-ontologies, and fine-tuning is done on task specific target subset ontologies. 

4.1 Pre-training 
Hierarchical-ID generation. An ontology is represented in the form of a graph where each 
node represents a class, and the parent and child relations of the ontology serve as connections 
between classes. Based on this graph structure of each full ontology, hierarchical-IDs are 
generated for all the classes. These are constructed by starting from the root node, separated by 
“-” at each hierarchy level, and traversing through each node in that level as shown in Figure 3. 
Following this method, a unique ID is generated for each path traversed. As such, for ontologies 
like SNOMED, where there are multiple paths between the root and any given class, there could be 
multiple IDs for that node. In such cases, the shortest ID is considered the hierarchical-ID of that 
node (highlighted in yellow in Figure 3), while the other path IDs are considered its synonymIDs.
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Each node ID inherently captures the information of all its ancestors. This enables the model to 
trace from a broader class, starting from the root and getting more granular at each level, thus 
simplifying the translation task. 

Figure 3: Hierarchical-IDs generation. This diagram illustrates hierarchical-IDs generation for the Enzyme 
concept in the SNOMED ontology. The enzyme has four paths because this node has multiple parents. The 
shortest ID (highlighted) is chosen as a Hierarchical-ID, and others are SynonymIDs for this concept. 

Training. After generating the hierarchical-IDs, multi-task pre-training is done on full 
ontologies using MLM by randomly masking the nodes, enabling the model to learn the 
hierarchy and semantics. For instance, “Structure of Forel’s H2 bundle” is represented as “1-1-0-
0-0-0-4-1-1-0-0-0-7” and is masked as “1-1-0-0-0-0-[MASK]-1-0-0-0-7”. Furthermore, additional 
tasks are included in order for the model to learn the semantics of each class in the form of 
class-level synonyms, labels, and descriptions; class-level relations between child and parent 
nodes; and the relation between synonym-ID and hierarchical-ID, using separate identifiers for 
each task in the pre-training step (Figure 2). The pre-training dataset has 2,406,456 instances 
constituting SNOMED, NCIT, and FMA ontologies. 
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The model is trained for 3 epochs, with an increasing masking percentage inearly over time, 
starting at 10% and increasing to 35% in the final batch. The pre-training is done on 8 V100 
32GB Nvidia GPUs with a batch size of 20, using a learning rate of 1e-3 with linear decay 
scheduler and AdamW optimizer.

In this work, ByT5 [Xue et al., 2022], which is a token-free variation of mT5 [Xue et al., 2020] and 
supports multi-task training, is used as the model structure for pre-training, fine-tuning and 

zero-shot predictions.

4.2 Fine-tuning  
The fine-tuning step aims to train the model on the downstream OM tasks. Only target subset 
ontologies, i.e., NCIT (Pharm), NCIT (Neoplas), and FMA (Body), are used for fine-tuning. The 
training data of each target sub-ontologies is augmented using the exact matches present in 
the labels and synonyms of other subset ontologies. We are also taking advantage of older 
ontology versions to add more synonyms to each target label. This expands the training 
corpus, enriches the data with minimal processing, and helps to perform more comprehensive 
learning. After the data augmentation for all the target sub-ontologies, fine-tuning is 
performed only on these target sub-ontologies corpora, i.e., NCIT (Pharm), NCIT (Neoplas), and 
FMA (Body).

Training data is generated for each class in the target ontologies, where the input is the class 
label, synonyms, and descriptions, and output is the corresponding node hierarchical ID, using 
a separate identifier for each task.

The 462,789 samples that made up the fine-tuning data included Pharm, Neoplas, and Body 
subsets. Using 8 Nvidia V100 32GB GPUs with a batch size of 20, the fine-tuning took around 21 
epochs. For the fine-tuning, a learning rate of 1e-3 with linear decay scheduler and warm-up of 
1.5 epoch using AdamW optimizer with eps of 1e-8 and weight decay of 1e-2 is used.

4.3 Zero-shot predictions 
TM is a multi-task model with the capability to translate between multiple ontologies from the 
input source class labels/synonyms to target hierarchical-IDs. For the inference, in contrast to 
BERTMap which leverages similarity scores between input and multiple potential matches, TM 
performs zero-shot predictions based on the input terms in source ontology.

One of the main advantages of our proposed TM is that given an input term with a specified 
task identifier, it is able to predict the best possible match from the target ontology with 
O(log(n)) complexity, where n corresponds to the size of the target ontology. As such, without 
even considering the confidence score of the predictions into account, TM offers high accuracy 
with lower time complexity as compared to the existing methods. 
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For confidence scoring, typically, two techniques of greedy and beam search are used. 
However, to make the TM predictions more robust and improve model precision, we leverage 
semantic similarity using embeddings of source terms and predicted target candidates. As 
such, the output is generated in two steps: (i) Prediction step: Given a source term, the model 
predicts the potential candidate in the target ontology graph, and (ii) Validation step: Using the 
same model, the embeddings are also generated for the target candidate and the similarity 
score is obtained between the source term and predicted target term embeddings (Figure 
4). Scores are generated across all the source and predicted class labels and synonyms, all of 
which are also augmented by singularization.

Figure 4: Zero-shot predictions. Given a source term and the assigned translation task (e.g., SNOMED to FMA), 
the output is generated in two steps: Prediction step and Validation step. In the Prediction step, a potential 
target candidate is generated along with the embeddings associated with the source term. In the Validation 
step, the target candidate class is again passed through our translation model to generate embeddings. Based 
on the source and target terms embeddings, a similarity score between the source and target candidate is 
obtained. This is done in a zero-shot manner with time complexity of O(log(n)).

The maximum generated score is considered as the similarity score. The source and the target 
candidates are considered valid mapping pairs if their similarity score exceeds a selected 
threshold. As such, the proposed model takes advantage of both graph search and semantic 
matching.

Mathematically, similarity score S is given as:

where c2 is the predicted class for c1, Ω(c1) and Ω(c2) are sets of labels and synonyms for c1 and 
c2, respectively, and max(Sim(Ω(c1), Ω(c2)) selects the maximum cosine similarity score across all 
the labels and synonyms of c1 (source) and c2 (predicted). If an exact match is available between 
the labels and synonyms of source and target classes, we assign a maximum similarity score, 
since embedding similarity will also give a similar result. 

11

Truveta Mapper

Fine-tuned TM

Source ontology class + Task

Target ontology node

Target ontology class + Task

Target 
candidate

Source term embedding

Target term embedding

Similarity 
score



5. Results

5.1 Evaluation criteria 
Commonly used metrics for evaluating OM systems [He et al., 2022b]: Precision (P), Recall (R), 
and F-score are used as the global evaluation metrics. Mathematically,

where, Mref  are the reference mappings, consisting of matching pairs, m = (c, c'), such that c and 
c' are two classes from the to-be-aligned ontologies, and Mout are the mappings computed by 
OM systems and β = 1.

Local evaluation metrics, Hits@K and Mean Reciprocal Rank (MRR), introduced in [He et al., 
2022b] are also used for current evaluation and can be represented as:

where Rank(m) returns the ranking position of m among Mm U {m} according to their scores, 
Mm represents a set of negative mappings pairs for each of the source term c in Mref , such 
that (c, ci

'') Mm with i ∈ {1, 2, ..., 100} and ci
'' are the 100 negative output candidates from target 

ontologies for each of the source terms c in Mref. As such, the Hits and MRR would be different 
for different selected 100 samples. We have published the results of our model based on the 
provided Mm set in [He et al., 2022b] for a fair comparison. To provide a more robust measure 
of local metrics, we are reporting overall accuracy as well, although this is not provided for any 
of the other models. Accuracy here can be mathematically presented as:

where m = (c, c') represents matching pairs in the Mref set, and f(c, T) refers to the target 
candidate predicted by the model, given an input term c and appropriate task identifier T. 

Baselines. Results are compared with the SOTA approaches: Edit-Similarity, LogMap, AML, 
BERTMap [He et al., 2022b], and recently published results in [OAEI, 2022]. To be consistent, 
evaluation for P, R, F-score, Hit@1, and MRR is done using [DeepOnto, 2022] library.

12

Truveta Mapper



5.2 Prediction results 
Prediction results are shown in Tables 2–4, for the three equivalence OM tasks, from 
SNOMED to FMA (Body), SNOMED to NCIT (Pharm), and SNOMED to NCIT (Neoplas). The 
results demonstrate the precision, recall, F-score, Hit@1, MRR, and accuracy for TM and the 
baseline approaches presented in [He et al., 2022b] and [OAEI, 2022] on the test data for the 
unsupervised setting. The highest numbers for each of these metrics are highlighted in the 
tables to emphasize which model is outperforming others in each category emphasize which 
model is outperforming others in each category. 

Task Precision Recall F-score MRR Hit@1 Accuracy

TM(Ours)1 0.947 0.738 0.830
0.960 0.942 0.801

TM(Ours)2 0.960 0.720 0.823

Edit-Similarity* 0.976 0.660 0.787 0.895 0.869 NA

LogMap* 0.702 0.581 0.636 0.545 0.330 NA

AML* 0.841 0.776 0.807 NA NA NA

BERTMap* 0.997 0.639 0.773 0.954 0.930 NA

LogMap-Lite** 0.967 0.543 0.695 NA NA NA

AMD 0.890 0.704 0.786 NA NA NA

BERTMap-Lite** 0.976 0.660 0.787 0.895 0.869 NA

Matcha** 0.875 0.594 0.707 NA NA NA

ATMatcher ** 0.264 0.226 0.244 NA NA NA

LSMatch** 0.809 0.072 0.132 NA NA NA

Table 2: Result for equivalence matching – SNOMED (Body) to FMA (Body)

1,2 are based on our proposed TM model, where the former is based on similarity score and later is based on greedy search score

* These numbers are based on [He et al., 2022b] and we used the same evaluation metrics for TM

**These numbers are based on recent [OAEI, 2022] published results.

13

Truveta Mapper



Task Precision Recall F-score MRR Hit@1 Accuracy

TM(Ours)1 0.972 0.929 0.950
0.987 0.982 0.801

TM(Ours)2 0.977 0.872 0.922

Edit-Similarity* 0.979 0.432 0.600 0.836 0.760 NA

LogMap* 0.915 0.612 0.733 0.820 0.695 NA

AML* 0.940 0.615 0.743 NA NA NA

BERTMap* 0.966 0.606 0.745 0.919 0.876 NA

LogMap-Lite** 0.995 0.598 0.747 NA NA NA

AMD 0.962 0.745 0.840 NA NA NA

BERTMap-Lite** 0.979 0.432 0.600 0.836 0.760 NA

Matcha** 0.941 0.613 0.742 NA NA NA

ATMatcher ** 0.937 0.566 0.706 NA NA NA

LSMatch** 0.982 0.551 0.706 NA NA NA

Table 3: Results for equivalence matching – SNOMED (Pharm) to NCIT (Pharm)

Task Precision Recall F-score MRR Hit@1 Accuracy

TM(Ours)1 0.809 0.795 0.802
0.962 0.944 0.802

TM(Ours)2 0.812 0.773 0.792

Edit-Similarity* 0.815 0.709 0.759 0.900 0.876 NA

LogMap* 0.823 0.547 0.657 0.824 0.747 NA

AML* 0.747 0.554 0.636 NA NA NA

BERTMap* 0.655 0.777 0.711 0.960 0.939 NA

LogMap-Lite** 0.947 0.520 0.671 NA NA NA

AMD 0.836 0.534 0.652 NA NA NA

BERTMap-Lite** 0.815 0.709 0.759 0.900 0.876 NA

Matcha** 0.754 0.564 0.645 NA NA NA

ATMatcher ** 0.866 0.284 0.428 NA NA NA

LSMatch** 0.902 0.238 0.377 NA NA NA

Table 4:  Result for equivalence matching – SNOMED (Neoplas) to NCIT (Neoplas).

1,2 are based on our proposed TM model, where the former is based on similarity score and later is based on greedy search score
* These numbers are based on [He et al., 2022b] and we used the same evaluation metrics for TM
**These numbers are based on recent [OAEI, 2022] published results.
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The overall results illustrate that TM is outperforming all the baselines for all three OM tasks 
in F-score, Hit@1, and MRR. A high threshold is selected to generate the most confident cross-
ontology matching pairs. Note that a single unified model is trained and leveraged here to 
predict all the results in the form of a source class to target hierarchical-IDs, using appropriate 
task identifiers.

There are two TM results presented in the given tables, and both are based on different 
scoring schemes. TM2 is based on greedy search scores with softmax probabilities using 
temperature scaling. TM1 is based on a new and more robust prediction scheme described in 
Subsection 4.3, taking advantage of both graph search and semantic similarity. It can be seen 
that both of our methods surpass SOTA for all the tasks.

TM1 is more robust and has significant improvements as compared to any of the existing 
methods. To be precise, 2.3% improvement over the second best result (AML) in Body, 11.0% 
improvement for Pharm (as compared to AMD), and 4.3% improvement for Neoplas as 
compared to BertMap-Lite and Edit-Similarity, is seen for TM1 in the F-score. It should be noted 
that even without TM, none of these methods are SOTA in all the tasks.

For generating local metrics for Hit@1 and MRR, TM is used to generate the embedding 
similarity score of input terms in the test set and their corresponding candidates in                   
Mm U {m} set. We are also outperforming all existing SOTA methods based on MRR and Hit@1. 
Additionally, we are reporting accuracy metric, which is consistent, and more representative 
of the model performance. For this metric, the TM predictions are obtained across the entire 
target ontology without using any smaller subset of negative samples from the test set, while 
reducing the time complexity from quadratic to log-linear.
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6. Conclusions and discussions 

This work presents a new approach to OM by treating the OM process as a translation task and 
performing multi-task pretraining, fine-tuning, and predictions in a zero-shot, unified and end-
to-end manner. The proposed approach takes advantage of transfer-learning across different 
ontologies and does not require manual annotations for training. Additionally, the trained 
model understands the semantics of the text as well as the structure of the ontologies. We 
show that our proposed method outperforms Edit-Similarity, LogMap, AML, BERTMap, and the 
recently proposed OM frameworks in the OM22 conference [OAEI, 2022] in all the tasks.

Our approach provides several advantages: (1) It reduces the time complexity to log-linear 
as opposed to quadratic in the existing approaches1, (2) It is based on zero-shot prediction, 
without requiring much post-processing and does not employ mapping extension or mapping 
repair in contrast to the other methods, (3) It does not require any manual labeled cross-
ontologies matching pairs due to zero-shot learning, (4) One unified framework is used as a 
result of multitasking, which makes it easier to productionize these large transformer-based 
models, (5) It is robust toward different tokenization schemes as it uses byte level tokenization, 
(6) It learns complete ontologies graphs, using the hierarchical-IDs which provides a more 
natural path for translation, and would be significantly helpful for subsumption mappings.

In the future, we will pre-train the starting checkpoint with more domain-related corpus (e.g., 
PubMed, MIMIC-III, clinical notes) instead of the C4 dataset. Another interesting track can be 
ensemble learning of existing SOTA models with TM. 

1. Note that BERTMap reduces the time complexity from O(n2) in traditional approaches to O(kn), where k << n 
with an additional preprocessing step by considering only a small portion of target subset ontology classes with at 
least one subword token common to the source class candidate, which adds dependency on the tokenization hy-
perparameters and could be error prone since some semantically matching cases with lexical variations could get 
filtered out in this process. Contrary to that, such limitation does not exist in TM since it performs matching from 
source to target without reducing the target corpora size. Time-complexity of TM is O(nlog(n)), where n represents 
the number of nodes in the target ontology graph (same as the number of classes), noting that a single search in 
a tree structure with n nodes can be performed in O(log(n)) time.
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